Deploying Nutanix Enterprise AI (NAI) NVD Reference Application
Version 2.3.0
This version of the NAI deployment is based on the Nutanix Enterprise AI (NAI) v2.3.0
release.
stateDiagram-v2
direction LR
state DeployNAI {
[*] --> DeployNAIAdmin
DeployNAIAdmin --> InstallSSLCert
InstallSSLCert --> DownloadModel
DownloadModel --> CreateNAI
CreateNAI --> [*]
}
[*] --> PreRequisites
PreRequisites --> DeployNAI
DeployNAI --> TestNAI : next section
TestNAI --> [*]
Prepare for NAI Deployment
Enable NKP Operators
Enable these NKP Operators from NKP GUI.
Note
In this lab, we will be using the Management Cluster Workspace to deploy our Nutanix Enterprise AI (NAI)
However, in a customer environment, it is recommended to use a separate workload NKP cluster.
- In the NKP GUI, Go to Clusters
- Click on Management Cluster Workspace
- Go to Applications
-
Search and enable the following applications: follow this order to install dependencies for NAI application
- Prometheus Monitoring: version
69.1.2
or later - Prometheus Adapter: version
v4.11.0
or later - Istio Service Mesh: version
1.20.8
or later
- Prometheus Monitoring: version
-
The next application to enable is
-
Knative: version
v1.17.0
or later -
Search for Knative in the Applications
-
Use the following configuration parameters in Workspace Configuration:
serving: config: features: kubernetes.podspec-nodeselector: enabled autoscaler: enable-scale-to-zero: false knativeIngressGateway: spec: selector: istio: ingressgateway servers: - hosts: - '*' port: name: https number: 443 protocol: HTTPS tls: mode: SIMPLE credentialName: nai-cert # (1)
- We will create this credential in the next section
-
-
Open
$HOME/.env
file inVSCode
-
Add (append) the following line and save it
-
Run the command to load the environment variables
-
Install
kserve
using the following commandsPulled: ghcr.io/kserve/charts/kserve-crd:v0.15.0 Digest: sha256:57ad1a5475fd625cb558214ba711752aa77b7d91686a391a5f5320cfa72f3fa8 Release "kserve-crd" has been upgraded. Happy Helming! NAME: kserve-crd LAST DEPLOYED: Mon May 19 06:11:30 2025 NAMESPACE: kserve STATUS: deployed REVISION: 2 TEST SUITE: None (devbox)
-
Check if
kserve
pods are running
Note
It may take a few minutes for each application to be up and running. Monitor the deployment to make sure that these applications are running before moving on to the next section. ```
Deploy NAI
We will use the Docker login credentials we created in the previous section to download the NAI Docker images.
Change the Docker login credentials
The following Docker based environment variable values need to be changed from your own Docker environment variables to the credentials downloaded from Nutanix Portal.
$DOCKER_USERNAME
$DOCKER_PASSWORD
-
Open
$HOME/.env
file inVSCode
-
Add (append) the following environment variables and save it
-
Source the environment variables (if not done so already)
-
In
VSCode
Explorer pane, browse to$HOME/nai
folder -
Click on New File and create file with the following name:
with the following content:
# nai-monitoring stack values for nai-monitoring stack deployment in NKE environment naiMonitoring: ## Component scraping node exporter ## nodeExporter: serviceMonitor: enabled: true endpoint: port: http-metrics scheme: http targetPort: 9100 namespaceSelector: matchNames: - kommander serviceSelector: matchLabels: app.kubernetes.io/name: prometheus-node-exporter app.kubernetes.io/component: metrics ## Component scraping dcgm exporter ## dcgmExporter: podLevelMetrics: true serviceMonitor: enabled: true endpoint: targetPort: 9400 namespaceSelector: matchNames: - kommander serviceSelector: matchLabels: app: nvidia-dcgm-exporter
Tip
It is possible to get the values file using the following command
helm repo add ntnx-charts https://nutanix.github.io/helm-releases helm repo update ntnx-charts helm pull ntnx-charts/nai-core --version=nai-core-version --untar=true
All the files will be untar'ed to a folder nai-core in the present working directory
Use the
nkp-values.yaml
file in the installation command -
In
VSCode
, Under$HOME/nai
folder, click on New File and create a file with the following name:with the following content:
#!/usr/bin/env bash set -ex set -o pipefail helm repo add ntnx-charts https://nutanix.github.io/helm-releases helm repo update ntnx-charts #NAI-core helm upgrade --install nai-core ntnx-charts/nai-core --version=$NAI_CORE_VERSION -n nai-system --create-namespace --wait \ --set imagePullSecret.credentials.username=$DOCKER_USERNAME \ --set imagePullSecret.credentials.password=$DOCKER_PASSWORD \ --insecure-skip-tls-verify \ -f nkp-values.yaml
-
Run the following command to deploy NAI
$HOME/nai/nai-deploy.sh + set -o pipefail + helm repo add ntnx-charts https://nutanix.github.io/helm-releases "ntnx-charts" already exists with the same configuration, skipping + helm repo update ntnx-charts Hang tight while we grab the latest from your chart repositories... ...Successfully got an update from the "ntnx-charts" chart repository Update Complete. ⎈Happy Helming!⎈ helm upgrade --install nai-core ntnx-charts/nai-core --version=$NAI_CORE_VERSION -n nai-system --create-namespace --wait \ --set imagePullSecret.credentials.username=$DOCKER_USERNAME \ --set imagePullSecret.credentials.password=$DOCKER_PASSWORD \ --insecure-skip-tls-verify \ -f nkp-values.yaml Release "nai-core" has been upgraded. Happy Helming! NAME: nai-core LAST DEPLOYED: Mon Sep 16 22:07:24 2024 NAMESPACE: nai-system STATUS: deployed REVISION: 7 TEST SUITE: None
-
Verify that the NAI Core Pods are running and healthy
$ kubens nai-system ✔ Active namespace is "nai-system" $ kubectl get po,deploy NAME READY STATUS RESTARTS AGE pod/nai-api-55c665dd67-746b9 1/1 Running 0 5d1h pod/nai-api-db-migrate-fdz96-xtmxk 0/1 Completed 0 40h pod/nai-db-789945b4df-lb4sd 1/1 Running 0 43h pod/nai-iep-model-controller-84ff5b5b87-6jst9 1/1 Running 0 5d8h pod/nai-ui-7fc65fc6ff-clcjl 1/1 Running 0 5d8h pod/prometheus-nai-0 2/2 Running 0 43h NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/nai-api 1/1 1 1 5d8h deployment.apps/nai-db 1/1 1 1 5d8h deployment.apps/nai-iep-model-controller 1/1 1 1 5d8h deployment.apps/nai-ui 1/1 1 1 5d8h
Install SSL Certificate
In this section we will install SSL Certificate to access the NAI UI. This is required as the endpoint will only work with a ssl endpoint with a valid certificate.
NAI UI is accessible using the Ingress Gateway.
The following steps show how cert-manager can be used to generate a self signed certificate using the default selfsigned-issuer present in the cluster.
If you are using Public Certificate Authority (CA) for NAI SSL Certificate
If an organization generates certificates using a different mechanism then obtain the certificate + key and create a kubernetes secret manually using the following command:
Skip the steps in this section to create a self-signed certificate resource.
-
Get the Ingress host using the following command:
-
Get the value of
INGRESS_HOST
environment variable -
We will use the command output e.g:
10.x.x.216
as the IP address for NAI as reserved in this section -
Construct the FQDN of NAI UI using nip.io and we will use this FQDN as the certificate's Common Name (CN).
-
Create the ingress resource certificate using the following command:
cat << EOF | k apply -f - apiVersion: cert-manager.io/v1 kind: Certificate metadata: name: nai-cert namespace: istio-system spec: issuerRef: name: selfsigned-issuer kind: ClusterIssuer secretName: nai-cert commonName: nai.${INGRESS_HOST}.nip.io dnsNames: - nai.${INGRESS_HOST}.nip.io ipAddresses: - ${INGRESS_HOST} EOF
Accessing the UI
-
In a browser, open the following URL to connect to the NAI UI
-
Change the password for the
admin
user -
Login using
admin
user and password.
Download Model
We will download and user llama3 8B model which we sized for in the previous section.
- In the NAI GUI, go to Models
- Click on Import Model from Hugging Face
- Choose the
meta-llama/Meta-Llama-3.1-8B-Instruct
model -
Input your Hugging Face token that was created in the previous section and click Import
-
Provide the Model Instance Name as
Meta-Llama-3.1-8B-Instruct
and click Import -
Go to VSC Terminal to monitor the download
Get jobs in nai-admin namespacekubens nai-admin ✔ Active namespace is "nai-admin" kubectl get jobs NAME COMPLETIONS DURATION AGE nai-c0d6ca61-1629-43d2-b57a-9f-model-job 0/1 4m56s 4m56
Validate creation of pods and PVCkubectl get po,pvc NAME READY STATUS RESTARTS AGE nai-c0d6ca61-1629-43d2-b57a-9f-model-job-9nmff 1/1 Running 0 4m49s NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE nai-c0d6ca61-1629-43d2-b57a-9f-pvc-claim Bound pvc-a63d27a4-2541-4293-b680-514b8b890fe0 28Gi RWX nai-nfs-storage <unset> 2d
Verify download of model using pod logskubectl logs -f nai-c0d6ca61-1629-43d2-b57a-9f-model-job-9nmff /venv/lib/python3.9/site-packages/huggingface_hub/file_download.py:983: UserWarning: Not enough free disk space to download the file. The expected file size is: 0.05 MB. The target location /data/model-files only has 0.00 MB free disk space. warnings.warn( tokenizer_config.json: 100%|██████████| 51.0k/51.0k [00:00<00:00, 3.26MB/s] tokenizer.json: 100%|██████████| 9.09M/9.09M [00:00<00:00, 35.0MB/s]<00:30, 150MB/s] model-00004-of-00004.safetensors: 100%|██████████| 1.17G/1.17G [00:12<00:00, 94.1MB/s] model-00001-of-00004.safetensors: 100%|██████████| 4.98G/4.98G [04:23<00:00, 18.9MB/s] model-00003-of-00004.safetensors: 100%|██████████| 4.92G/4.92G [04:33<00:00, 18.0MB/s] model-00002-of-00004.safetensors: 100%|██████████| 5.00G/5.00G [04:47<00:00, 17.4MB/s] Fetching 16 files: 100%|██████████| 16/16 [05:42<00:00, 21.43s/it]:33<00:52, 9.33MB/s] ## Successfully downloaded model_files|██████████| 5.00G/5.00G [04:47<00:00, 110MB/s] Deleting directory : /data/hf_cache
-
Optional - verify the events in the namespace for the pvc creation
$ k get events | awk '{print $1, $3}' 3m43s Scheduled 3m43s SuccessfulAttachVolume 3m36s Pulling 3m29s Pulled 3m29s Created 3m29s Started 3m43s SuccessfulCreate 90s Completed 3m53s Provisioning 3m53s ExternalProvisioning 3m45s ProvisioningSucceeded 3m53s PvcCreateSuccessful 3m48s PvcNotBound 3m43s ModelProcessorJobActive 90s ModelProcessorJobComplete
The model is downloaded to the Nutanix Files pvc
volume.
After a successful model import, you will see it in Active status in the NAI UI under Models menu
Create and Test Inference Endpoint
In this section we will create an inference endpoint using the downloaded model.
- Navigate to Inference Endpoints menu and click on Create Endpoint button
-
Fill the following details based on GPU or CPU availability:
Tip
NAI
v2.3
can host a model up to 7 billion parameters on CPU only nodes- Endpoint Name:
llama-8b
- Model Instance Name:
Meta-LLaMA-8B-Instruct
- Use GPUs for running the models :
Checked
- No of GPUs (per instance):
- GPU Card:
NVIDIA-L40S
(or other available GPU) - No of Instances:
1
- API Keys: Create a new API key or use an existing one
- Endpoint Name:
llama-8b
- Model Instance Name:
Meta-LLaMA-8B-Instruct
- Use GPUs for running the models :
leave unchecked
- No of Instances:
1
- API Keys: Create a new API key or use an existing one
- Endpoint Name:
-
Click on Create
-
Monitor the
nai-admin
namespace to check if the services are coming up -
Check the events in the
nai-admin
namespace for resource usage to make sure there are no errors$ kubectl get events -n nai-admin --sort-by='.lastTimestamp' | awk '{print $1, $3, $5}' 110s FinalizerUpdate Updated 110s FinalizerUpdate Updated 110s RevisionReady Revision 110s ConfigurationReady Configuration 110s LatestReadyUpdate LatestReadyRevisionName 110s Created Created 110s Created Created 110s Created Created 110s InferenceServiceReady InferenceService 110s Created Created
-
Once the services are running, check the status of the inference service