Skip to content

Deploying GPT-in-a-Box NVD Reference Application using GitOps (FluxCD)

stateDiagram-v2
    direction LR

    state TestLLMApp {
        [*] --> CheckInferencingService
        CheckInferencingService -->  TestFrontEndApp
        TestFrontEndApp --> TestRAG
        TestRAG --> [*]
    }

    [*] --> PreRequisites
    PreRequisites --> DeployLLMV1 
    DeployLLMV1 --> TestLLMApp : previous section
    TestLLMApp --> [*]

Accessing LLM Frontend

Once the bootstrapping is done in the previous section. We can access and test our LLM application.

  1. In VSC Terminal, check the status of inferencing service

    kubectl get isvc -A
    
    NAMESPACE   NAME      URL                                                READY   PREV   LATEST   PREVROLLEDOUTREVISION   LATESTREADYREVISION       AGE
    llm         llm-llm   http://llm-llm.llm.dev-cluster.10.x.x.217.nip.io   True           100                              llm-llm-predictor-00001   4h9m
    

  2. Access the URL to check status and make sure it is alive and well

    $ curl http://llm-llm.llm.dev-cluster.10.x.x.217.nip.io
    
    $ curl http://llm-llm.llm.dev-cluster.10.x.x.217.nip.io
    {"status":"alive"} 
    

  3. On VSC terminal, get the LLM Frontend ingress endpoints

    kubectl get ingress -A | grep frontend
    
    kubectl get ingress -A | grep frontend
    NAMESPACE              NAME                                                      CLASS   HOSTS                                      ADDRESS        PORTS     AGE
    gptnvd-reference-app   gptnvd-reference-app-gptnvd-ref-app-gptnvd-referenceapp   nginx   frontend.dev-cluster.10.x.x.216.nip.io   10.x.x.216   80, 443   4h9m      
    
  4. Copy the HOSTS address frontend.dev-cluster.10.x.x.216.nip.io from the above output and paste it in your browser. You should be able to see the LLM chat interface. Start asking away.

Testing LLM Frontend Chat App

  1. Type any question in the chat box. For example: give me a python program to print the fibonacci series?